Simulation for Dynamic Patients Scheduling based on Many Objective Optimization and Coordinator
Abstract
Problem načrtovanja sprejema pacientov (PASP) vključuje načrtovanje pacientovega sprejema, lokacije in časa v bolnišnici, da se dosežejo določeni cilji glede kakovosti storitev in stroškov, zaradi česar je problem kombinatorične optimizacije z več cilji in NP-težke narave. Poleg tega se PASP uporablja v dinamičnih scenarijih, kjer se pričakuje, da bodo pacienti prispeli v bolnišnice zaporedno, kar zahteva dinamično ravnanje z optimizacijo. Ob upoštevanju obeh vidikov, optimizacije in dinamičnega upoštevanja, predlagamo simulacijo za dinamično razporejanje pacientov, ki temelji na optimizaciji z več cilji, oknu in koordinatorju. Vloga optimizacije z več cilji je obravnavanje številnih mehkih omejitev in zagotavljanje nabora nedominiranih rešitev koordinatorju. Vloga okenca je zbiranje novoprispelih pacientov in predhodno nepotrjenih pacientov z namenom posredovanja koordinatorju. Nazadnje, vloga koordinatorja je, da iz okna izloči podmnožico pacientov in jih posreduje algoritmu za optimizacijo. Po drugi strani pa je koordinator odgovoren tudi za izbiro ene od neprevladujočih rešitev, da jo aktivira v bolnišnici in odloča o nepotrjenih bolnikih, da jih vstavi v okno za naslednji krog. Vrednotenje simulatorja in primerjava med več optimizacijskimi algoritmi kažeta superiornost NSGA-III glede na pokritost nabora in vrednosti mehkih omejitev. Zato je obravnavanje PASP kot dinamične optimizacije z več cilji koristna rešitev. NSGA-II je zagotovil 0,96 odstotka prevlade nad NSGA-II in 100-odstotni odstotek prevlade vseh drugih algoritmov
Full Text:
PDFReferences
References
I. Papanicolas, L. R. Woskie, and A. K. Jha, "Health care spending in the United States and other high-income countries," Jama, vol. 319, no. 10, pp. 1024-1039, 2018.
N. Fares, R. S. Sherratt, and I. H. Elhajj, "Directing and orienting ICT healthcare solutions to address the needs of the aging population," in Healthcare, 2021, vol. 9, no. 2, p. 147: MDPI.
J. Meehan, L. Menzies, and R. Michaelides, "The long shadow of public policy; Barriers to a value-based approach in healthcare procurement," Journal of Purchasing Supply Management, vol. 23, no. 4, pp. 229-241, 2017.
R. Guido, V. Solina, and D. Conforti, "Offline patient admission scheduling problems," in International Conference on Optimization and Decision Science, 2017, pp. 129-137: Springer.
A. N. Mahmed and M. Kahar, "Window-Based Multi-Objective Optimization for Dynamic Patient Scheduling with Problem-Specific Operators," Computers, vol. 11, no. 5, p. 63, 2022.
C. Taramasco, B. Crawford, R. Soto, E. M. Cortés-Toro, and R. Olivares, "A new metaheuristic based on vapor-liquid equilibrium for solving a new patient bed assignment problem," Expert Systems with Applications, vol. 158, p. 113506, 2020.
R. Guido, M. C. Groccia, and D. Conforti, "An efficient matheuristic for offline patient-to-bed assignment problems," European Journal of Operational Research, vol. 268, no. 2, pp. 486-503, 2018.
K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi, "Metaheuristic research: a comprehensive survey," Artificial Intelligence Review, vol. 52, no. 4, pp. 2191-2233, 2019.
R. Alizadeh, J. Rezaeian, M. Abedi, and R. Chiong, "A modified genetic algorithm for non-emergency outpatient appointment scheduling with highly demanded medical services considering patient priorities," Computers Industrial Engineering, vol. 139, p. 106106, 2020.
K. Dorgham, I. Nouaouri, H. Ben-Romdhane, and S. Krichen, "A hybrid simulated annealing approach for the patient bed assignment problem," Procedia Computer Science, vol. 159, pp. 408-417, 2019.
A. Hammouri, "A modified biogeography-based optimization algorithm with guided bed selection mechanism for patient admission scheduling problems," Journal of King Saud University-Computer Information Sciences, 2020.
J. Luo, Q. Liu, Y. Yang, X. Li, M.-r. Chen, and W. Cao, "An artificial bee colony algorithm for multi-objective optimisation," Applied Soft Computing, vol. 50, pp. 235-251, 2017.
D. Wang, D. Tan, and L. Liu, "Particle swarm optimization algorithm: an overview," Soft Computing, vol. 22, no. 2, pp. 387-408, 2018.
R. Tanabe and H. Ishibuchi, "An easy-to-use real-world multi-objective optimization problem suite," Applied Soft Computing, vol. 89, p. 106078, 2020.
H. R. Maier, S. Razavi, Z. Kapelan, L. S. Matott, J. Kasprzyk, and B. A. Tolson, "Introductory overview: Optimization using evolutionary algorithms and other metaheuristics," Environmental modelling
software, vol. 114, pp. 195-213, 2019.
P. Demeester, W. Souffriau, P. De Causmaecker, and G. V. Berghe, "A hybrid tabu search algorithm for automatically assigning patients to beds," Artificial Intelligence in Medicine, vol. 48, no. 1, pp. 61-70, 2010.
A. M. Turhan and B. Bilgen, "Mixed integer programming based heuristics for the Patient Admission Scheduling problem," Computers Operations Research, vol. 80, pp. 38-49, 2017.
B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, and G. V. Berghe, "One hyper-heuristic approach to two timetabling problems in health care," Journal of Heuristics, vol. 18, no. 3, pp. 401-434, 2012.
S. Kifah and S. Abdullah, "An adaptive non-linear great deluge algorithm for the patient-admission problem," Information Sciences, vol. 295, pp. 573-585, 2015.
Y.-H. Zhu, T. A. Toffolo, W. Vancroonenburg, and G. V. Berghe, "Compatibility of short and long term objectives for dynamic patient admission scheduling," Computers Operations Research, vol. 104, pp. 98-112, 2019.
M. Rezaeiahari and M. T. Khasawneh, "Simulation optimization approach for patient scheduling at destination medical centers," Expert Systems with Applications, vol. 140, p. 112881, 2020.
A. K. Abera, M. M. O’Reilly, M. Fackrell, B. R. Holland, and M. Heydar, "On the decision support model for the patient admission scheduling problem with random arrivals and departures: A solution approach," Stochastic Models, vol. 36, no. 2, pp. 312-336, 2020.
B. Tang, Z. Zhu, H.-S. Shin, A. Tsourdos, and J. Luo, "A framework for multi-objective optimisation based on a new self-adaptive particle swarm optimisation algorithm," Information Sciences, vol. 420, pp. 364-385, 2017.
C. Seren, "A hybrid jumping particle swarm optimization method for high dimensional unconstrained discrete problems," in 2011 IEEE Congress of Evolutionary Computation (CEC), 2011, pp. 1649-1656: IEEE.
Q. Lu, X. Zhu, D. Wei, K. Bai, J. Gao, and R. Zhang, "Multi-phase and integrated multi-objective cyclic operating room scheduling based on an improved NSGA-II approach," Symmetry, vol. 11, no. 5, p. 599, 2019.
A. Arram and M. Ayob, "A novel multi-parent order crossover in genetic algorithm for combinatorial optimization problems," Computers Industrial Engineering, vol. 133, pp. 267-274, 2019.
S. Ceschia and A. Schaerf, "Dynamic patient admission scheduling with operating room constraints, flexible horizons, and patient delays," Journal of Scheduling, vol. 19, no. 4, pp. 377-389, 2016.
B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, and G. V. Berghe, "One hyper-heuristic approach to two timetabling problems in health care," Journal of Heuristics, vol. 18, no. 3, pp. 401-434, 2012.
S. Kifah and S. Abdullah, "An adaptive non-linear great deluge algorithm for the patient-admission problem," Information Sciences, vol. 295, pp. 573-585, 2015.
Y.-H. Zhu, T. A. Toffolo, W. Vancroonenburg, and G. V. Berghe, "Compatibility of short and long term objectives for dynamic patient admission scheduling," Computers Operations Research for Health Care, vol. 104, pp. 98-112, 2019.
M. Rezaeiahari and M. T. Khasawneh, "Simulation optimization approach for patient scheduling at destination medical centers," Expert Systems with Applications, vol. 140, p. 112881, 2020.
S. Ceschia and A. Schaerf, "Local search and lower bounds for the patient admission scheduling problem," Computers Operations Research for Health Care, vol. 38, no. 10, pp. 1452-1463, 2011.
S. Ceschia and A. Schaerf, "Modeling and solving the dynamic patient admission scheduling problem under uncertainty," Artificial intelligence in medicine, vol. 56, no. 3, pp. 199-205, 2012.
DOI: https://doi.org/10.31449/inf.v48i1.5256
This work is licensed under a Creative Commons Attribution 3.0 License.