Temporal Transformer-Based Video Super-Resolution Reconstruction with Cross-Modal Attention
Abstract
With the increasing demand for high-definition video, video super-resolution technology has become a key means to improve video picture quality. Traditional video super-resolution methods are limited by computational resources and model complexity, which struggle to meet the demands of modern video processing. In recent years, the rise of deep learning technology has brought a revolutionary breakthrough for video super-resolution. In this paper, we propose a deep learning-based video superresolution reconstruction method that combines Transformer, cross-modal learning and fusion, and an attention mechanism. We design the Temporal Transformer-based Video Super-Resolution (TT-VSR) architecture, which significantly improves the accuracy and detail richness of video reconstruction by integrating the Transformer's self-attention mechanism with CNN's spatial feature extraction capabilities. The introduction of cross-modal learning and fusion, along with the cross-modal attention mechanism, further enhances the model's adaptability to complex scenes and detail recovery ability. Experimental results demonstrate that our model outperforms existing methods, achieving a PSNR of X dB and an SSIM of Y, indicating substantial improvements in image quality. These results validate the efficacy of our approach and open a new path for the development of video super-resolution technology.DOI:
https://doi.org/10.31449/inf.v49i10.7146Downloads
Published
How to Cite
Issue
Section
License
I assign to Informatica, An International Journal of Computing and Informatics ("Journal") the copyright in the manuscript identified above and any additional material (figures, tables, illustrations, software or other information intended for publication) submitted as part of or as a supplement to the manuscript ("Paper") in all forms and media throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the right to reproduce and/or to distribute the Paper to other journals or digital libraries in electronic and online forms and systems.
I understand that I retain the rights to use the pre-prints, off-prints, accepted manuscript and published journal Paper for personal use, scholarly purposes and internal institutional use.
In certain cases, I can ask for retaining the publishing rights of the Paper. The Journal can permit or deny the request for publishing rights, to which I fully agree.
I declare that the submitted Paper is original, has been written by the stated authors and has not been published elsewhere nor is currently being considered for publication by any other journal and will not be submitted for such review while under review by this Journal. The Paper contains no material that violates proprietary rights of any other person or entity. I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article. I have informed the co-author(s) of the terms of this publishing agreement.
Copyright © Slovenian Society Informatika







